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Date of Birth 01 January 1950 Medical Facility          Cancer Center Specimen Received 02 January 2016

Sex Male Specimen Site Liver
FMI Case # TRF000000 Date of Collection 03 January 2016
Medical Record # 100001 Specimen Type Slide
Specimen ID SID-00001

Ordering Physician Williams, Jane
Additional Recipient Not Given
Medical Facility ID # 000001
Pathologist Not Provided

ABOUT THE TEST:
FoundationOne™ is a next-generation sequencing (NGS) based assay that identifies genomic alterations within hundreds of cancer-related genes.

PATIENT RESULTS TUMOR TYPE:  LUNG ADENOCARCINOMA

6 genomic alterations Genomic Alterations Identified†

ROS1  CD74-ROS1 fusion
CDK4  amplification
MDM2  amplification
RICTOR  amplification
APC  S688*
FGF10  amplification

Additional Disease-relevant Genes with No Reportable
Alterations Identified†

EGFR
KRAS
ALK
BRAF
MET
RET
ERBB2

3 therapies associated with potential clinical benefit

0 therapies associated with lack of response

18 clinical trials

† For a complete list of the genes assayed and performance specifications,
please refer to the Appendix

THERAPEUTIC IMPLICATIONS

Genomic Alterations
Detected

FDA-Approved Therapies
(in patient’s tumor type)

FDA-Approved Therapies
(in another tumor type) Potential Clinical Trials

ROS1
CD74-ROS1 fusion

Ceritinib
Crizotinib

None Yes, see clinical trials
section

CDK4
amplification

None Palbociclib Yes, see clinical trials
section

MDM2
amplification

None None Yes, see clinical trials
section

RICTOR
amplification

None None Yes, see clinical trials
section
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Genomic Alterations
Detected

FDA-Approved Therapies
(in patient’s tumor type)

FDA-Approved Therapies
(in another tumor type) Potential Clinical Trials

APC
S688*

None None None

FGF10
amplification

None None None

Note: Genomic alterations detected may be associated with activity of certain FDA-approved drugs; however, the agents listed in this report may
have little or no evidence in the patient’s tumor type. Neither the therapeutic agents nor the trials identified are ranked in order of potential or
predicted efficacy for this patient, nor are they ranked in order of level of evidence for this patient’s tumor type.
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GENOMIC ALTERATIONS

GENE
ALTERATION

INTERPRETATION

 ROS1
CD74-ROS1 fusion

Gene and Alteration: The ROS1 oncogene encodes a tyrosine kinase of the insulin receptor family that 
plays a role in regulating cellular growth and differentiation by activating several signaling pathways, 
including those involving mitogen-activated protein kinase ERK1/2, phosphatidylinositol 3-kinase
(PI3K), protein kinase B (AKT), STAT3, and VAV31. ROS1 is commonly involved in chromosomal 
rearrangements that lead to the expression of strongly oncogenic chimeric fusion proteins, such as 
observed here2,3,4. CD74-ROS1 fusions are found in both lung adenocarcinoma and lung squamous cell 
carcinoma samples3,4,5,6 and have been reported to be oncogenic3,4,7.

Frequency and Prognosis: ROS1 rearrangements or fusions have been reported in approximately 1-2%of 
non-small cell lung carcinoma (NSCLC) tumors2,3,4,8, including in 1-3.4% of lung adenocarcinoma 
cases4,5,9,10,11. CD74-ROS1 fusions accounted for 23% (3/13) to 27% (5/18) of the ROS1 rearrangements 
identified in two studies of lung cancer3,5. In the Lung Adenocarcinoma TCGA dataset, ROS1 point 
mutations have been detected in 3.5% of cases, whereas ROS1 amplification was not identified12. 
Elevated ROS1 protein levels have been observed in 22% of NSCLC samples evaluated in one study6. A 
study of 1,137 patients with lung adenocarcinoma showed that Stage 4 patients with ROS1 
rearrangement had significantly better overall survival (OS) compared to other genetically defined Stage 
4 subgroups, with an estimated mean OS of 5.3 years for patients who were treated with chemotherapy 
and crizotinib8. Positive kinase fusion status (ALK, ROS1, or RET) was associated with improved prognosis 
in lung adenocarcinoma, independently of other prognostic factors3, although never-smokers with 
surgically resected lung adenocarcinoma and ALK or ROS1 fusion had significantly shorter disease-free 
survival (hazard ratio, 2.11)11. A study of 208 never-smokers observed an improved objective response 
rate and longer median progression-free survival (PFS) for ROS-fusion-positive patients treated with 
pemetrexed but a reduced PFS for ROS1-positive patients treated with EGFR-targeted kinase 
inhibitors10.

Potential Treatment Strategies: Patients with ROS1-activating rearrangements may benefit from 
treatment with tyrosine kinase inhibitors with activity against ROS1, such as the approved therapies 
crizotinib (Moro-Sibilot et al., 2015; ASCO Abstract 8065)4,5,7,13,14,15,16 and ceritinib17,18,19,20. Crizotinib 
has shown clinical efficacy in ROS1-rearranged non-small cell lung cancer (NSCLC)8,13. Ceritinib 
achieved a partial response for a patient with ROS1-rearranged NSCLC17; preclinical data support the 
sensitivity of ROS1 fusion-positive tumors to certinib18,19,20. Crizotinib, ceritinib, and other ROS1-
targeted therapies, including AZD3463, brigatinib, cabozantinib, DS-6051-b, entrectinib, foretinib, 
and lorlatinib, are being investigated in clinical trials2.

 CDK4
amplification

Gene and Alteration: CDK4 encodes cyclin-dependent kinase 4, which regulates the cell cycle,
senescence, and apoptosis 21. CDK4 and its functional homolog CDK6 are activated by D-type cyclins and
promote cell cycle progression by inactivating the tumor suppressor Rb22,23. Amplification of CDK4, as a
result of chromosomal amplification of the 12q13 region of chromosome 12, has been reported in
multiple cancer types, including lung and esophageal cancer and glioblastoma, and correlated with high
CDK4 mRNA and protein expression24,25.
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INTERPRETATION

Frequency and Prognosis: In the TCGA datasets, CDK4 amplification has been reported in 7% of lung 
adenocarcinoma samples analyzed, while CDK4 mutation has been reported in 1% of cases12. CDK4 
amplification correlated with high CDK4 gene and protein expression in lung tumors24. High CDK4 
protein expression has been detected in 23-47% of non-small cell lung cancers (NSCLC), specifically in 
38% (18/47) of lung adenocarcinomas, 44% (4/9) of lung squamous cell carcinomas, and 83% (10/12) of 
large cell lung cancers24,26,27. High CDK4 protein expression predicted poor overall survival in patients 
with lung cancer in one study27. A preclinical study suggests targeting of CDK4 as a potential strategy 
against KRAS-driven lung adenocarcinomas28.

Potential Treatment Strategies: CDK4 amplification may predict sensitivity to CDK4/6 inhibitors, such
as palbociclib, LEE011, and abemaciclib (Infante et al., 2014; ASCO Abstract 2528, Shapiro et al., 2013;
ASCO Abstract 2500) 29,30. Palbociclib is FDA approved for use in combination with the aromatase
inhibitor letrozole for the treatment of postmenopausal women with estrogen receptor (ER)-positive,
human epidermal growth factor receptor 2 (HER2)-negative advanced breast cancer31.

 MDM2
amplification

Gene and Alteration: MDM2 acts to prevent the activity of the tumor suppressor p53; therefore, 
overexpression or amplification of MDM2 may be oncogenic32,33. Overexpression or amplification of 
MDM2 is frequent in human cancer34.

Frequency and Prognosis: Amplification of MDM2 has been reported in 8% of cases in the Lung 
Adenocarcinoma TCGA dataset12. Separate studies have reported similar incidences of 6-7% in non-
small cell lung cancer (NSCLC), mainly in patients with adenocarcinoma, but a higher incidence of 21%
has also been observed, with amplification found in various NSCLC subtypes35,36,37. The role of MDM2 
expression/amplification as a prognostic marker is complex, with some studies showing a negative and 
others a positive effect on survival in patients with NSCLC35,37,38,39.

Potential Treatment Strategies: MDM2 antagonists disrupt the MDM2-p53 interaction, leading to the 
stabilization of p5340. Preclinical studies have suggested that amplification of MDM2, in the absence of 
concurrent TP53 mutations, may increase sensitivity to these agents41,42. Multiple MDM2 antagonists 
are under investigation in clinical trials (Beryozkina et al., 2011; ASCO Abstract 3039, Siu et al., 2014; 
ASCO Abstract 2535).

 RICTOR
amplification

Gene and Alteration: RICTOR encodes an mTOR-binding protein that forms part of the rapamycin-
insensitive mTORC2 complex, a regulator of cell metabolism and the cytoskeleton43,44,45. RICTOR 
amplification has been reported in cancer (Cheng et al., 2014; ASCO Abstract 8027, Ruder et al., 2015; 
AACR Abstract 3576, Dabir et al., 2015; ASCO Abstract 7576)46 and has been associated with clinical 
response to mTORC1/2 inhibition (Cheng et al., 2014; ASCO Abstract 8027, Kristeleit et al., 2015; ASCO 
Abstract 2592).

Frequency and Prognosis: In a genomic study of 1,070 lung cancer cases, focal amplification of RICTOR 
was detected in 14.6% of small cell lung cancers (7/48), 8.7% of large cell neuroendocrine carcinomas 
(2/23), 8.4% of adenocarcinomas (61/724), and 7.4% of squamous cell carcinomas (8/108)47. RICTOR 
amplification in lung cancer often co-occurs with mutations in KRAS, EGFR, or the PI3K–AKT–mTOR 
pathway, but has also been characterized as a driver alteration in lung cancer47.
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Potential Treatment Strategies: Tumors with RICTOR amplification may be sensitive to inhibitors of 
mTORC2, the RICTOR-containing complex48. In a preclinical study, RICTOR-overexpressing glioma cells 
were sensitive to RICTOR knockdown49. A patient with RICTOR-amplified lung adenocarcinoma 
experienced stable disease for >18 months upon treatment with dual mTORC1/mTORC2 inhibitors47, 
and a patient with RICTOR-amplified metastatic thymus cancer achieved a partial response upon 
treatment with a pan-PI3K/mTORC1/mTORC2 inhibitor (Kristeleit et al., 2015; ASCO Abstract 2592). 
Numerous inhibitors that target both mTORC1 and mTORC2 complexes, as well as dual PI3K/mTOR 
inhibitors, are under preclinical and clinical investigation in multiple tumor types50,51. RICTOR alterations, 
including amplification, have been implicated in resistance to the EGFR tyrosine kinase inhibitor erlotinib 
in patients with non-small cell lung carcinoma (Ruder et al., 2015; AACR Abstract 3576).

 APC
S688*

Gene and Alteration: APC (adenomatous polyposis coli) encodes a tumor suppressor with critical roles 
in regulating cell division and adhesion. APC interacts with beta-catenin and controls signaling in the 
WNT pathway, which regulates embryonic development and cell differentiation52. APC alterations that 
disrupt the beta-catenin binding domain (amino acids 1020-2035), such as observed here, are likely to 
impair APC binding to beta-catenin and may upregulate WNT signaling53,54,55,56,57 and are therefore 
predicted to be inactivating. Germline mutations in APC are found in more than 90% of patients with 
familial adenomatous polyposis (FAP)58,59,60. The prevalence for FAP in the general population is 
estimated to be 1:8,300 from birth61, and in the appropriate clinical context, germline testing of APC is 
recommended.

Frequency and Prognosis: APC mutations have been reported in 4-7% of lung adenocarcinoma
cases12,62,63,64. In contrast, loss of heterozygosity at the APC/MCC locus has been reported in up to 68%
(17/25) of NSCLC, with a higher incidence in squamous cell carcinomas compared to
adenocarcinomas65,66. APC has been reported to be down-regulated in NSCLC tumors and cell lines67.
Hypermethylation of APC in NSCLC tumors has been reported in a number of studies68,69,70.
Hypermethylation of the APC gene and lower APC mRNA expression have been associated with poorer
survival in patients with NSCLC66,71.

Potential Treatment Strategies: There are no approved drugs targeted to APC defects or WNT 
upregulation in solid tumors; however, several potential therapies, including WNT pathway inhibitors 
and TRAIL agonists, are in clinical trials. Preclinical studies have reported that APC inactivation or
beta-catenin activation confer synthetic lethality when TRAIL receptors are upregulated and the TRAIL 
death receptor program is activated72. In addition, the COX-2 inhibitor celecoxib, which is FDA approved 
for arthritis, was shown to reduce WNT signaling in cancer cell lines73,74. A preclinical study has found 
that a small-molecule tankyrase inhibitor shows some activity in APC-mutant CRC models75.

 FGF10
amplification

Gene and Alteration: FGF10 encodes fibroblast growth factor 10, a ligand that primarily binds to FGFR2, 
but also FGFR176, with a broad range of functions in development and wound healing. FGF10 has been 
implicated in regulating the epithelial-mesenchymal transition in cancer cells77 and during normal 
development78. Germline mutations in FGF10 have been implicated in aplasia of the lacrimal and 
salivary glands, an autosomal dominant developmental disorder79. Amplification of FGF10 has been 
reported in cancer80 and may be biologically relevant in this context34,81.
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Frequency and Prognosis: Infrequent but recurrent amplification of FGF10 has been reported in multiple 
cancer types, including gallbladder cancer82, gastric cancer83, and esophageal squamous cell carcinoma 
(SCC)84; one small-scale study reported FGF10 amplification in 7/7 oral SCC cases85. Preclinical studies 
have shown that increased FGF10 expression and FGF10-FGFR1/2 signaling promotes cancer cell 
proliferation, invasion, migration, and tumorigenesis in a variety of tumor models86,87,88,89.

Potential Treatment Strategies: A preclinical study reported that FGF10-driven migration and invasion 
of pancreatic cancer cell lines could be blocked by inhibitory antibodies targeting FGFR288, and a 
second study found that expression of dominant-negative FGFR1 or FGFR2 led to a decrease in tumor 
size in a prostate cancer xenograft model driven by FGF10, although the decrease was not statistically 
significant87. Clinical trials are ongoing for multiple inhibitors that target FGFR2 and other kinases, 
including the FDA-approved agents pazopanib, ponatinib, and lenvatinib, as well as pan-FGFR inhibitors 
such as AZD4547, BGJ398, CH5183284, and TAS-120; however, these agents have not been 
comprehensively tested in the context of FGF10 amplification or overexpression.
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THERAPIES

FDA-APPROVED THERAPIES IN PATIENT TUMOR TYPE
THERAPY SUMMARY OF DATA IN PATIENT TUMOR TYPE

Ceritinib Approved Indications: Ceritinib is an inhibitor of the kinases ALK, ROS1, IR, and IGF-1R. It is FDA
approved for the treatment of metastatic non-small cell lung cancer (NSCLC) in patients whose
tumors are positive for ALK rearrangements, as detected by an FDA-approved test, and who have
progressed on or are intolerant to crizotinib.
Gene Association: Activation of ROS1 may predict sensitivity to ceritinib17.
Supporting Data: A Phase 1 study of ceritinib reported a 58% response rate in 122 NSCLC patients
harboring alterations in ALK and a response rate of 56% in 80 of these patients who had previously
been treated with crizotinib 90. Ceritinib has also been shown to inhibit ROS1 in vitro, and clinical trials
are currently enrolling NSCLC patients with ROS1 rearrangement (Anjum et al., 2013; ANE Annual
Meeting Abstract A98, Zhou et al., 2014; ASCO Abstract TPS8122)16.

Crizotinib Approved Indications: Crizotinib is an inhibitor of the kinases MET, ALK, ROS1, and RON. It is FDA
approved to treat patients with metastatic non-small cell lung cancer (NSCLC) whose tumors are
positive for ALK rearrangements or ROS1 rearrangements.
Gene Association: Crizotinib has demonstrated clinical efficacy for patients with ROS1-rearranged 
NSCLC (Ou et al., 2013; ASCO Abstract 8032, Mazieres et al. 2014; ASCO Abstract 11035)4,5,13,14,15.

Supporting Data: Patients with ROS1-rearranged metastatic NSCLC treated with crizotinib achieved 
an objective response rate (ORR) of 72% (36/50), with 3 complete responses and 33 partial 
responses; the median progression-free survival (PFS) was 19.2 months, and the median response 
duration was 17.6 months 13. Preliminary Phase 2 data confirm a high ORR to crizotinib in ROS1-
rearranged NSCLC (Moro-Sibilot et al., 2015; ASCO Abstract 8065). In retrospective studies, crizotinib 
therapy was associated with an ORR of 80% (24/30) or higher (5/5) and a median PFS of 9.1 months for 
patients with ROS1-rearranged advanced lung adenocarcinoma8. Crizotinib has also demonstrated 
efficacy in patients with NSCLC and ALK rearrangements91, an NTRK1 fusion92, or MET 
activation93,94,95,96,97,98.
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ADDITIONAL THERAPIES – FDA-APPROVED IN OTHER TUMOR TYPES
THERAPY SUMMARY OF DATA IN OTHER TUMOR TYPE

Palbociclib Approved Indications: Palbociclib inhibits the cyclin-dependent kinases 4 and 6 (CDK4/6) and is FDA
approved to treat hormone receptor (HR)-positive, HER2-negative advanced or metastatic breast
cancer in combination with letrozole as first-line therapy for postmenopausal women or in
combination with fulvestrant following progression on endocrine therapy.
Gene Association: Clinical studies in liposarcoma and mantle cell lymphoma as well as responses in 
patients with breast cancer or melanoma indicate that activation of cyclin D-CDK4/6 may predict 
sensitivity to therapies such as palbociclib (Infante et al., 2014; ASCO Abstract 2528)30,99.
Supporting Data: Palbociclib has been studied primarily for the treatment of ER+ breast
cancer31,100,101. However, a Phase 2 study of palbociclib in patients with recurrent or metastatic non-
small cell lung cancer (NSCLC) and loss of p16INK4a reported no responses in any of the 16 evaluable
patients but stable disease (SD) in 8 (50%) patients (Gopalan et al., 2014; ASCO Abstract 8077). A trial
of the CDK4/6 inhibitor abemaciclib in patients with NSCLC reported a disease control rate of 51% (37%
for patients with KRAS-wild-type tumors and 54% for patients with KRAS-mutant tumors), with one
confirmed PR (Goldman et al., 2014; ASCO Abstract 8026). For various tumor types, preclinical studies
suggest that palbociclib may be useful in combination with other therapies targeting oncogenic drivers
such as MEK, BRAF, PI3K, or IGF1R102,103,104,105,106. Multiple preclinical studies demonstrate that loss of
Rb predicts resistance to palbociclib107,108,109,110.

Genomic alterations detected may be associated with activity of certain FDA-approved drugs; however, the agents listed in this report may have
little or no evidence in the patient’s tumor type.
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CLINICAL TRIALS TO CONSIDER

IMPORTANT: While every effort is made to ensure the accuracy of the information contained below, the information available in
the public domain is continually updated and should be investigated by the physician or research staff. This is not meant to be a
complete  list  of  available  trials.   In  order  to  conduct  a  more  thorough  search,  please  go  to  www.clinicaltrials.gov  and  use  the
search terms provided below.  For more information about a specific clinical trial, type the NCT ID of the trial indicated below into
the search bar.

 GENE RATIONALE FOR POTENTIAL CLINICAL TRIALS

• ROS1
CD74-ROS1 fusion

Activating mutations and rearrangements of ROS1 may predict sensitivity to inhibitors of ROS1.

Examples of clinical trials that may be appropriate for this patient are listed below. These trials were
identified through a search of the trial website clinicaltrials.gov using keyword terms such as "ROS1",
"AKT", "MET", "crizotinib", "ceritinib", "cabozantinib", "AP26113", "LDK378", "PF-06463922",
"LY2801653", "NSCLC", "lung", "solid tumor", and/or "advanced cancer".

TITLE PHASE TARGETS LOCATIONS NCT ID
Phase 1 Safety, Pharmacokinetic And
Pharmacodynamic Study Of PF-02341066, A c-
Met/HGFR Selective Tyrosine Kinase Inhibitor,
Administered Orally To Patients With Advanced
Cancer

Phase 1 AXL, ALK,
MET, ROS1,
RON, TRKs

California, Colorado,
Massachusetts, Michigan, New
York, North Carolina, Ohio,
Pennsylvania, Tennessee,
Seoul (Korea, Republic of),
Victoria (Australia)

NCT00585195

Phase 1/2 Study Of PF-06463922 (An ALK/ROS1
Tyrosine Kinase Inhibitor) In Patients With
Advanced Non-Small Cell Lung Cancer
Harboring Specific Molecular Alterations

Phase
1/Phase
2

ALK, ROS1 Arkansas, California, Colorado,
District of Columbia,
Massachusetts, Michigan,
Missouri, New York,
Pennsylvania, Tennessee,
Aviano (PN) (Italy), Barcelona
(Spain), Chiba (Japan), Fukuoka
(Japan), Hyogo (Japan), Koto-
ku, Tokyo (Japan), Madrid
(Spain), New South Wales
(Australia), Osaka (Japan), Paris
(France), Perugia (Italy),
Queensland (Australia),
Singapore (Singapore), Tokyo
(Japan), Toulouse (France),
Toulouse Cedex 9 (France),
Victoria (Australia), Villejuif
Cedex (France)

NCT01970865

A Phase 1/2a, Multicenter, Open-Label Study of
Oral RXDX-101 in Adult Patients With Locally
Advanced or Metastatic Cancer Confirmed to
be Positive for TrkA, TrkB, TrkC, ROS1, or ALK
Molecular Alterations

Phase
1/Phase
2

ALK, ROS1,
TRKA/B/C

California, Colorado, District of
Columbia, Florida,
Massachusetts, New York,
Tennessee, Texas, Barcelona
(Spain), Seoul (Korea, Republic
of)

NCT02097810

Modular Phase II Study to Link Targeted
Therapy to Patients With Pathway Activated
Tumors: Module - 7 Ceritinib (LDK378) for

Phase 2 ALK, ROS1,
IGF1R, INSR

California, Colorado, Florida,
Illinois, Indiana, Maryland,
Missouri, Nebraska, Nevada,

NCT02186821
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Patients Whose Tumors Have Aberrations in
ALK or ROS1

New Mexico, North Carolina,
North Dakota, Ohio, Oregon,
Pennsylvania, Rhode Island,
South Dakota, Tennessee,
Texas, Utah, Washington
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CLINICAL TRIALS TO CONSIDER (cont.)

 GENE RATIONALE FOR POTENTIAL CLINICAL TRIALS

• CDK4
amplification

Tumors with CDK4 amplification and intact RB1 may be sensitive to CDK4/6 inhibitors.

Examples of clinical trials that may be appropriate for this patient are listed below. These trials were
identified through a search of the trial website clinicaltrials.gov using keyword terms such as "CDK4",
"PD-0332991", "LEE011", "LY2835219", "palbociclib", "NSCLC", "lung", "solid tumor", and/or "advanced
cancer".

TITLE PHASE TARGETS LOCATIONS NCT ID
Phase II Trial of the Cyclin-Dependent Kinase
Inhibitor PD 0332991 in Patients With Cancer

Phase 2 CDK4, CDK6 Pennsylvania NCT01037790

A Phase I Study of the CDK4/6 Inhibitor PD-
0332991, 5-Fluorouracil, and Oxaliplatin in
Patients With Advanced Solid Tumor
Malignancies

Phase 1 CDK4, CDK6 District of Columbia NCT01522989

A Phase 1b Study of LY2835219 in Combination
With Multiple Single Agent Options for Patients
With Stage IV NSCLC

Phase 1 CDK4, CDK6,
Others

Arkansas, California, Indiana,
New Jersey, New Mexico,
North Carolina, Tennessee,
Madrid (Spain), Majadahonda
(Spain), Sevilla (Spain)

NCT02079636

Modular Phase II Study to Link Targeted
Therapy to Patients With Pathway Activated
Tumors: Module 8 - LEE011 for Patients With
CDK4/6 Pathway Activated Tumors

Phase 2 CDK4, CDK6 Alaska, Arizona, California,
Colorado, Connecticut,
Indiana, Maryland, Missouri,
New Mexico, North Carolina,
Ohio, Oregon, Rhode Island,
South Dakota, Tennessee,
Texas, Utah, Virginia,
Washington, Wisconsin

NCT02187783
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CLINICAL TRIALS TO CONSIDER (cont.)

 GENE RATIONALE FOR POTENTIAL CLINICAL TRIALS

• MDM2
amplification

MDM2 overexpression or amplification in the context of wild-type p53 may increase sensitivity to
inhibitors of the MDM2-p53 interaction.

Examples of clinical trials that may be appropriate for this patient are listed below. These trials were
identified through a search of the trial website clinicaltrials.gov using keyword terms such as "MDM2",
"CGM097", "DS-3032b", "RO5503781", "RO6839921", "nutlin", "NSCLC", "lung", "solid tumor", and/or
"advanced cancer".

TITLE PHASE TARGETS LOCATIONS NCT ID
A Phase I, Open-label, Multi-center, Dose
Escalation Study of Oral CGM097, a p53/HDM2-
interaction Inhibitor, in Adult Patients With
Selected Advanced Solid Tumors

Phase 1 MDM2 Massachusetts, Essen
(Germany), Köln (Germany),
Lyon Cedex (France), Singapore
(Singapore), Zürich
(Switzerland)

NCT01760525

A Phase 1 Multiple Ascending Dose Study of DS-
3032b, an Oral MDM2 Inhibitor, in Subjects
With Advanced Solid Tumors or Lymphomas

Phase 1 MDM2 Michigan, New York,
Tennessee, Texas

NCT01877382

A Multi-Center, Open-Label, First-in-Human,
Phase I Dose-Escalation Study to Investigate the
Safety, Tolerability, Pharmacokinetics, and
Pharmacodynamics of RO6839921, An MDM2
Antagonist, Following Intravenous
Administration in Patients With Advanced
Malignancies, Including Acute Myeloid
Leukemia (AML)

Phase 1 MDM2 Colorado, Missouri, South
Carolina, Ontario (Canada),
Quebec (Canada)

NCT02098967

A Phase I, Open Label, Multicenter, Dose-
escalation Study of HDM201 in Adult Patients
With Advanced Solid and Hematological
Tumors Characterized by Wild-type TP53

Phase 1 MDM2 Massachusetts, New York,
Amsterdam (Netherlands),
Catalunya (Spain), Essen
(Germany), Frankfurt
(Germany), Hyogo (Japan),
Lyon Cedex (France), Singapore
(Singapore), Taiwan ROC
(Taiwan), Tokyo (Japan),
Utrecht (Netherlands),
Würzburg (Germany)

NCT02143635
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CLINICAL TRIALS TO CONSIDER (cont.)

 GENE RATIONALE FOR POTENTIAL CLINICAL TRIALS

• RICTOR
amplification

RICTOR is a component of the mTORC2 complex, and RICTOR amplification may therefore predict
sensitivity to dual mTORC1/mTORC2 inhibitors or dual PI3K/mTOR inhibitors.

Examples of clinical trials that may be appropriate for this patient are listed below. These trials were
identified through a search of the trial website clinicaltrials.gov using keyword terms such as "GDC-
0980", "GSK2126458", "PF-04691502", "PF-05212384", "INK-128", "OSI-027", "CC-223", "DS-3078a",
"NSCLC", "lung adenocarcinoma", "solid tumor", and/or "advanced cancer".

TITLE PHASE TARGETS LOCATIONS NCT ID
A Multiarm, Open-label, Phase 1b Study of
MLN2480 (an Oral A-, B-, and CRAF Inhibitor) in
Combination With MLN0128 (an Oral mTORC
1/2 Inhibitor), or Alisertib (an Oral Aurora A
Kinase Inhibitor), or Paclitaxel, in Adult Patients
With Advanced Nonhematologic Malignancies

Phase 1 mTORC1,
mTORC2, RAF,
Aurora kinase
A

Massachusetts, Pennsylvania,
Barcelona (Spain), Oxfordshire
(United Kingdom)

NCT02327169

A Phase 1, Open-label Study to Evaluate the
Safety, Tolerability, and Pharmacokinetics of
MLN0128 (an Oral mTORC 1/2 Inhibitor) as a
Single Agent and in Combination With
Paclitaxel in Adult Patients With Advanced
Nonhematologic Malignancies

Phase 1 mTORC1,
mTORC2

Florida, Oklahoma, Tennessee NCT02412722

A Multicenter, Open-label, Phase 1b Study of
MLN0128 (an Oral mTORC1/2 Inhibitor) in
Combination With MLN1117 (an Oral PI3Kα
Inhibitor) in Adult Patients With Advanced
Nonhematologic Malignancies

Phase 1 PI3K-alpha,
mTORC1,
mTORC2

Massachusetts, Tennessee,
Texas, Barcelona (Spain),
Sutton (United Kingdom)

NCT01899053

TAX-TORC: A Phase I Multi-centre Trial of the
Combination of AZD2014 (Dual mTORC1 and
mTORC2 Inhibitor) and Weekly Paclitaxel in
Patients With Solid Tumours.

Phase 1 mTORC1,
mTORC2

Cambridgeshire (United
Kingdom), London (United
Kingdom), Surrey (United
Kingdom)

NCT02193633

A Phase 1 Study of MLN0128 and Bevacizumab
in Patients With Recurrent Glioblastoma and
Other Solid Tumors

Phase 1 mTORC1,
mTORC2,
VEGFA

Massachusetts NCT02142803

Evaluation of the Efficacy of High Throughput
Genome Analysis as a Therapeutic Decision
Tool for Patients With Metastatic Non-small
Cell Lung Cancer

Phase 2 EGFR, VEGFR,
RET, MEK,
mTORC1,
mTORC2,
FGFR, AKT,
ERBB2, ERBB3

Bordeaux (France), Caen
(France), Chartres (France),
Clermont-Ferrand (France),
Créteil (France), Dijon (France),
Grenoble (France), Lille
(France), Lyon (France),
Marseille (France), Nantes
(France), Paris (France), Pierre
Bénite (France), Toulon
(France), Toulouse (France),
Tours (France), Villejuif
(France)

NCT02117167
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APPENDIX

VARIANTS OF UNKNOWN SIGNIFICANCE

Note: One or more variants of unknown significance (VUS) were detected in this patient's tumor. These variants may not have been
adequately characterized in the scientific literature at the time this report was issued, and/or the genomic context of these
alterations make their significance unclear. We choose to include them here in the event that they become clinically meaningful in
the future.

BRD4
P974L

IL7R
amplification

SDHA
amplification

DOT1L
G1452_A1458del

NFE2L2
V207F

SMARCA4
D1175G

ESR1
S118P

PIK3C2B
T1021A

SPTA1
L1646F

FAM46C
H295Q

PIK3CG
R359H

FGF19
F59L

RANBP2
E744Q

FGFR1
M456I

ROS1
L2086F
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APPENDIX

GENES ASSAYED IN FOUNDATIONONE

FoundationOne is designed to include all genes known to be somatically altered in human solid tumors that are validated targets for
therapy,  either  approved or  in  clinical  trials,  and/or  that  are  unambiguous drivers  of  oncogenesis  based on current  knowledge.  The
current assay interrogates 315 genes as well as introns of 28 genes involved in rearrangements. The assay will be updated periodically
to reflect new knowledge about cancer biology.

DNA Gene List: Entire Coding Sequence for the Detection of Base Substitutions, Insertion/Deletions, and Copy Number Alterations
ABL1 ABL2 ACVR1B AKT1 AKT2 AKT3 ALK AMER1 (FAM123B) APC AR

ARAF ARFRP1 ARID1A ARID1B ARID2 ASXL1 ATM ATR ATRX AURKA

AURKB AXIN1 AXL BAP1 BARD1 BCL2 BCL2L1 BCL2L2 BCL6 BCOR

BCORL1 BLM BRAF BRCA1 BRCA2 BRD4 BRIP1 BTG1 BTK C11orf30 (EMSY)

CARD11 CBFB CBL CCND1 CCND2 CCND3 CCNE1 CD274 CD79A CD79B

CDC73 CDH1 CDK12 CDK4 CDK6 CDK8 CDKN1A CDKN1B CDKN2A CDKN2B

CDKN2C CEBPA CHD2 CHD4 CHEK1 CHEK2 CIC CREBBP CRKL CRLF2

CSF1R CTCF CTNNA1 CTNNB1 CUL3 CYLD DAXX DDR2 DICER1 DNMT3A

DOT1L EGFR EP300 EPHA3 EPHA5 EPHA7 EPHB1 ERBB2 ERBB3 ERBB4

ERG ERRFI1 ESR1 EZH2 FAM46C FANCA FANCC FANCD2 FANCE FANCF

FANCG FANCL FAS FAT1 FBXW7 FGF10 FGF14 FGF19 FGF23 FGF3

FGF4 FGF6 FGFR1 FGFR2 FGFR3 FGFR4 FH FLCN FLT1 FLT3

FLT4 FOXL2 FOXP1 FRS2 FUBP1 GABRA6 GATA1 GATA2 GATA3 GATA4

GATA6 GID4 (C17orf39) GLI1 GNA11 GNA13 GNAQ GNAS GPR124 GRIN2A GRM3

GSK3B H3F3A HGF HNF1A HRAS HSD3B1 HSP90AA1 IDH1 IDH2 IGF1R

IGF2 IKBKE IKZF1 IL7R INHBA INPP4B IRF2 IRF4 IRS2 JAK1

JAK2 JAK3 JUN KAT6A (MYST3) KDM5A KDM5C KDM6A KDR KEAP1 KEL

KIT KLHL6 KMT2A (MLL) KMT2C (MLL3) KMT2D (MLL2) KRAS LMO1 LRP1B LYN LZTR1

MAGI2 MAP2K1 MAP2K2 MAP2K4 MAP3K1 MCL1 MDM2 MDM4 MED12 MEF2B

MEN1 MET MITF MLH1 MPL MRE11A MSH2 MSH6 MTOR MUTYH

MYC MYCL (MYCL1) MYCN MYD88 NF1 NF2 NFE2L2 NFKBIA NKX2-1 NOTCH1

NOTCH2 NOTCH3 NPM1 NRAS NSD1 NTRK1 NTRK2 NTRK3 NUP93 PAK3

PALB2 PARK2 PAX5 PBRM1 PDCD1LG2 PDGFRA PDGFRB PDK1 PIK3C2B PIK3CA

PIK3CB PIK3CG PIK3R1 PIK3R2 PLCG2 PMS2 POLD1 POLE PPP2R1A PRDM1

PREX2 PRKAR1A PRKCI PRKDC PRSS8 PTCH1 PTEN PTPN11 QKI RAC1

RAD50 RAD51 RAF1 RANBP2 RARA RB1 RBM10 RET RICTOR RNF43

ROS1 RPTOR RUNX1 RUNX1T1 SDHA SDHB SDHC SDHD SETD2 SF3B1

SLIT2 SMAD2 SMAD3 SMAD4 SMARCA4 SMARCB1 SMO SNCAIP SOCS1 SOX10

SOX2 SOX9 SPEN SPOP SPTA1 SRC STAG2 STAT3 STAT4 STK11

SUFU SYK TAF1 TBX3 TERC
TERT
(promoter_only) TET2 TGFBR2 TNFAIP3 TNFRSF14

TOP1 TOP2A TP53 TSC1 TSC2 TSHR U2AF1 VEGFA VHL WISP3

WT1 XPO1 ZBTB2 ZNF217 ZNF703

DNA Gene List: For the Detection Select Rearrangements
ALK BCL2 BCR BRAF BRCA1 BRCA2 BRD4 EGFR ETV1 ETV4

ETV5 ETV6 FGFR1 FGFR2 FGFR3 KIT MSH2 MYB MYC NOTCH2

NTRK1 NTRK2 PDGFRA RAF1 RARA RET ROS1 TMPRSS2
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APPENDIX

FOUNDATIONONE PERFORMANCE SPECIFICATIONS

ACCURACY

Sensitivity: Base Substitutions
At Mutant Allele Frequency  ≥10% >99.9% (CI* 99.6%-100%)

At Mutant Allele Frequency  5-10% 99.3% (CI* 98.3%-99.8%)

Sensitivity: Insertions/Deletions (1-40 bp)
At Mutant Allele Frequency  ≥20% 97.9% (CI* 92.5%-99.7%)

At Mutant Allele Frequency 10-20% 97.3% (CI* 90.5%-99.7%)

Sensitivity: Copy Number Alterations—Amplifications
(ploidy <4, Amplification with  Copy Number ≥8)

At ≥30% tumor nuclei >99.0% (CI* 93.6%-100%)

At   20% tumor nuclei 92.6% (CI* 66.1%-99.8%)

Sensitivity: Copy Number Alterations—Deletions
(ploidy <4, Homozygous Deletions)

At ≥30% tumor nuclei 97.2% (CI* 85.5%-99.9%)

At   20% tumor nuclei 88.9% (CI* 51.8%-99.7%)

Sensitivity: Rearrangements (selected rearrangements in specimens with ≥20% tumor nuclei)**
>90.0% 1

>99.0% for ALK fusion2

(CI* 89.1%-100%)

Specificity of all variant types Positive Predictive Value (PPV) >99.0%

REPRODUCIBILITY (average concordance between replicates)
96.4%
98.9%

inter-batch precision
intra-batch precision

-- ---

*95% Confidence Interval
** Performance for gene fusions within targeted introns only. Sensitivity for gene fusions occurring outside targeted introns or in highly repetitive

intronic sequence contexts is reduced.
1 Based on analysis of coverage and re-arrangement structure in the COSMIC database for the solid tumor fusion genes where alteration
prevalence could be established, complemented by detection of exemplar rearrangements in cell line titration experiments.

2 Based on ALK re-arrangement concordance analysis vs. a standard clinical FISH assay described in: Yelensky, R. et al. Analytical validation of
solid tumor fusion gene detection in a comprehensive NGS-based clinical cancer genomic test, In: Proceedings of the 105th Annual Meeting of
the American Association for Cancer Research; 2014 Apr 5-9; San Diego, CA. Philadelphia (PA): AACR; 2014. Abstract nr 4699 

Assay specifications were determined for typical median exon coverage of approximately 500X. For additional information regarding the
validation of FoundationOne, please refer to the article, Frampton, GM. et al. Development and validation of a clinical cancer genomic profiling
test based on massively parallel DNA sequencing, Nat Biotechnol (2013 Oct. 20).

For additional information specific to the performance of this specimen, please contact Foundation Medicine, Inc. at 1-888-988-3639.
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ABOUT FOUNDATIONONE™
FoundationOne™:  FoundationOne was  developed and  its  performance  characteristics  determined by  Foundation  Medicine,  Inc.  (Foundation
Medicine).  FoundationOne  has  not  been  cleared  or  approved  by  the  United  States  Food  and  Drug  Administration  (FDA).  The  FDA  has
determined that  such clearance or  approval  is  not  necessary.  FoundationOne may be used for  clinical  purposes  and should not  be regarded
as  purely  investigational  or  for  research  only.  Foundation  Medicine’s  clinical  reference  laboratory  is  certified  under  the  Clinical  Laboratory
Improvement Amendments of 1988 (CLIA) as qualified to perform high-complexity clinical testing.
Diagnostic  Significance:  FoundationOne  identifies  alterations  to  select  cancer-associated  genes  or  portions  of  genes  (biomarkers).  In  some
cases, the Test Report also highlights selected negative test results regarding biomarkers of clinical significance.
Qualified  Alteration  Calls  (Equivocal  and  Subclonal):  An  alteration  denoted  as  “amplification  –  equivocal”  implies  that  the  FoundationOne
assay data provide some, but not unambiguous, evidence that the copy number of a gene exceeds the threshold for identifying copy number
amplification.  The threshold used in  FoundationOne for  identifying a  copy number amplification is  five (5)  for  ERBB2 and six  (6)  for  all  other
genes.  Conversely,  an  alteration  denoted  as  “loss  –  equivocal”  implies  that  the  FoundationOne  assay  data  provide  some,  but  not
unambiguous,  evidence  for  homozygous  deletion  of  the  gene  in  question.  An  alteration  denoted  as  “subclonal”  is  one  that  the
FoundationOne analytical methodology has identified as being present in <10% of the assayed tumor DNA.
The  Report  incorporates  analyses  of  peer-reviewed  studies  and  other  publicly  available  information  identified  by  Foundation  Medicine;
these  analyses  and information  may include associations  between a  molecular  alteration  (or  lack  of  alteration)  and one or  more  drugs  with
potential clinical benefit (or potential lack of clinical benefit), including drug candidates that are being studied in clinical research.
NOTE:  A finding of biomarker alteration does not necessarily indicate pharmacologic effectiveness (or lack thereof) of any drug or treatment
regimen; a finding of no biomarker alteration does not necessarily indicate lack of pharmacologic effectiveness (or effectiveness) of any drug
or treatment regimen.
Alterations  and  Drugs  Not  Presented  in  Ranked  Order:  In  this  Report,  neither  any  biomarker  alteration,  nor  any  drug  associated  with
potential clinical benefit (or potential lack of clinical benefit), are ranked in order of potential or predicted efficacy.
Level  of  Evidence  Not  Provided:  Drugs  with  potential  clinical  benefit  (or  potential  lack  of  clinical  benefit)  are  not  evaluated  for  source  or
level of published evidence.
No  Guarantee  of  Clinical  Benefit:  This  Report  makes  no  promises  or  guarantees  that  a  particular  drug  will  be  effective  in  the  treatment  of
disease  in  any  patient.  This  Report  also  makes  no  promises  or  guarantees  that  a  drug  with  potential  lack  of  clinical  benefit  will  in  fact
provide no clinical benefit.
No Guarantee of  Reimbursement:  Foundation Medicine makes no promises or  guarantees that  a  healthcare provider,  insurer or  other third
party payor, whether private or governmental, will reimburse a patient for the cost of FoundationOne.
Treatment  Decisions  are  Responsibility  of  Physician:  Drugs  referenced  in  this  Report  may  not  be  suitable  for  a  particular  patient.  The
selection of any, all  or none of the drugs associated with potential clinical benefit (or potential lack of clinical benefit) resides entirely within
the  discretion  of  the  treating  physician.  Indeed,  the  information  in  this  Report  must  be  considered  in  conjunction  with  all  other  relevant
information regarding a particular patient, before the patient’s treating physician recommends a course of treatment.
Decisions  on  patient  care  and  treatment  must  be  based  on  the  independent  medical  judgment  of  the  treating  physician,  taking  into
consideration  all  applicable  information  concerning  the  patient’s  condition,  such  as  patient  and  family  history,  physical  examinations,
information  from other  diagnostic  tests,  and  patient  preferences,  in  accordance  with  the  standard  of  care  in  a  given  community.  A  treating
physician’s decisions should not be based on a single test, such as this Test, or the information contained in this Report.
Certain sample or variant characteristics may result in reduced sensitivity. These include: subclonal alterations in heterogeneous samples, low
sample  quality  or  with  homozygous  losses  of  <3  exons;  and  deletions  and  insertions  >40bp,  or  in  repetitive/high  homology  sequences.
FoundationOne is performed using DNA derived from tumor, and as such germline events may not be reported.  The following targets typically
have low coverage resulting in a reduction in sensitivity: SDHD exon 6 and TP53 exon 1.

FoundationOne complies with all European Union (EU) requirements of the IVD Directive 98/79EC.  As such, the FoundationOne Assay
has been registered for CE mark by our EU Authorized Representative, Qarad b.v.b.a, Cipalstraat 3, 2440 Geel, Belgium.
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